3 resultados para Virology

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

What a pleasure it is to take part in welcoming you to this Fourth Annual Symposium in Virology. Such a tremendous program lies ahead! And how pleased and proud we are that this year's symposium is a special tribute to our colleague Dr. James Van Etten, Professor of Plant Pathology in our Institute of Agriculture and Natural Resources here at the University of Nebraska-Lincoln, who last-year was elected to membership in the National Academy of Sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annotation of the 330-kb Chlorella virus PBCV-1 genome identified a 237 nucleotide gene (a438l) that codes for a protein with ~35% amino acid identity to glutaredoxins (Grx) found in other organisms. The PBCV-1 protein resembles classical Grxs in both size (9 kDa) and location of the active site (N-terminus). However, the PBCV-1 Grx is unusual because it contains a monothiol active site (CPYS) rather than the typical dithiol active site (CPYC). To examine this unique active site, four sitespecific mutants (CPYC, CPYA, SPYC, and SPYS) were constructed to determine if the N-terminal cysteine is necessary for enzyme activity. Wild type and both mutants containing N-terminal cysteines catalyzed the reduction of disulfides in a coupled system with GSH, NADPH, and glutathione reductase. However, both mutants with an altered N-terminal cysteine were inactive. The grx gene is common in the Chlorella viruses. Molecular phylogenetic analyses of the PBCV-1 enzyme support its relatedness to those from other Chlorella viruses and yet demonstrate the divergence of the Grx molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen of swine and is known to cause abortion and infertility in pregnant sows and respiratory distress in piglets. PRRSV contains a major glycoprotein (GP5) and three minor glycoproteins (GP2a, GP3, and GP4) on the virion envelope, all of which are required for infectious virus production. To study their interactions amongst each other and with a cellular receptor for PRRSV, CD163, I cloned each of the viral glycoproteins and CD163 in various expression vectors. My studies have shown that while the GP2a, GP3, and GP4 are co-translationally glycosylated, the GP5 is post-translationally glycosylated. By using co-immunoprecipitation (co-IP) assays, strong interaction was demonstrated between GP4 and GP5 proteins, although weak interactions among the other envelope glycoproteins were also detected. Further, GP4 was found to mediate interactions leading to formation of multiprotein glycoprotein complex. My results also show that GP2a and GP4 proteins are the only two GPs that specifically interact with the CD163 molecule and that glycosylation of these GPs is required for efficient interaction. Based on these studies, I have developed an interactome map of the viral GPs and CD163 and have proposed a model of the viral glycoprotein complex and its interaction with CD163. Studies reported here also show that glycan addition at residue 184 (N184) of GP2a, and residues N42, N50, and N131 of GP3 is essential for recovery of infectious virus. Although single site glycosylation mutants of GP4 had no effect on infectious virus production, introduction of double mutations was lethal. The loss of glycan moieties of GP2a, GP3, and GP4 proteins had no effect on host neutralizing antibody production. Overall, I conclude that the PRRSV glycoproteins are co-translationally and post-translationally glycosylated, the GP4 protein is central to mediating interglycoprotein interactions, and along with GP2a, serves as the viral attachment protein that is responsible for interactions with the viral receptor, CD163. Further, glycosylation of GP2a, GP3, and GP4 proteins is required for infectious virus production, efficient interaction with CD163, but does not play any role in neutralizing antibody response in infected animals.